The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings (2024)

References

  1. Ansari, S. A. & Cho, M. H. Growth of three-dimensional flower-like SnS2 on gC3 N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustainable Energy & Fuels 1, 510–519 (2017).

    Article CAS Google Scholar

  2. Ansari, S. A., Ansari, S., Foaud, H. & Cho, M. H. Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New Journal of Chemistry 41, 9314–9320 (2017).

    Article CAS Google Scholar

  3. Ansari, S. A., Ansari, M. O. & Cho, M. H. Facile and scale up synthesis of red phosphorus-graphitic carbon nitride heterostructures for energy and environment applications. Scientific reports 6, 27713 (2016).

    Article ADS CAS PubMed PubMed Central Google Scholar

  4. Ansari, S. A., Khan, Z., Ansari, M. O. & Cho, M. H. Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Advances 6, 44616–44629 (2016).

    Article CAS Google Scholar

  5. Ansari, S. A., Ansari, M. S. & Cho, M. H. Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials. Physical Chemistry Chemical Physics 18, 3921–3928 (2016).

    Article CAS PubMed Google Scholar

  6. Gao, M., Zhu, L., Ong, W. L., Wang, J. & Ho, G. W. Structural design of TiO2-based photocatalyst for H2 production and degradation applications. Catalysis Science & Technology 5, 4703–4726 (2015).

    Article CAS Google Scholar

  7. Sun, P. et al. Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites. Catalysis Today 274, 2–7 (2016).

    Article CAS Google Scholar

  8. Ansari, S. A. & Cho, M. H. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications. Scientific reports 6, 25405 (2016).

    Article ADS CAS PubMed PubMed Central Google Scholar

  9. Zhang, X., Liu, Y., Lee, S. T., Yang, S. & Kang, Z. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy & Environmental Science 7, 1409–1419 (2014).

    Article CAS Google Scholar

  10. Etgar, L. et al. High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets. Advanced Materials 24, 2202–2206 (2012).

    Article CAS PubMed Google Scholar

  11. Liu, J. et al. Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials (2017).

  12. Hayden, S. C., Allam, N. K. & El-Sayed, M. A. TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli. Journal of the American Chemical Society 132, 14406–14408 (2010).

    Article CAS PubMed Google Scholar

  13. Wang, Z.-S. et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chemistry of Materials 13, 678–682 (2001).

    Article CAS Google Scholar

  14. Hensel, J., Wang, G., Li, Y. & Zhang, J. Z. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano letters 10, 478–483 (2010).

    Article ADS CAS PubMed Google Scholar

  15. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chemical reviews 110, 6595–6663 (2010).

    Article CAS PubMed Google Scholar

  16. Rawal, S. B., Bera, S., Lee, D., Jang, D. J. & Lee, W. I. Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2 : effect of their relative energy band positions on the photocatalytic efficiency. Catalysis Science & Technology 3, 1822–1830 (2013).

    Article CAS Google Scholar

  17. Roy, P., Berger, S. & Schmuki, P. TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition 50, 2904–2939 (2011).

    Article CAS PubMed Google Scholar

  18. Li, W., Wu, Z., Wang, J., Elzatahry, A. A. & Zhao, D. A perspective on mesoporous TiO2 materials. Chemistry of Materials 26, 287–298 (2013).

    Article Google Scholar

  19. Liu, H. et al. Hydrogen evolution via sunlight water splitting on an artificial butterfly wing architecture. Physical Chemistry Chemical Physics 13, 10872–10876 (2011).

    Article CAS PubMed Google Scholar

  20. Yang, X. Y. et al. Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews 46, 481–558 (2017).

    Article CAS PubMed Google Scholar

  21. Wang, Y. et al. Surface plasmon resonance of gold nanocrystals coupled with slow-photon-effect of biomorphic TiO2 photonic crystals for enhanced photocatalysis under visible-light. Catalysis Today 274, 15–21 (2016).

    Article CAS Google Scholar

  22. Zhu, S. et al. Fe2 O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous and Mesoporous Materials 190, 10–16 (2014).

    Article CAS Google Scholar

  23. Zada, I. et al. Angle dependent antireflection property of TiO2 inspired by cicada wings. Applied Physics Letters 109, 153701 (2016).

    Article ADS Google Scholar

  24. Huang, Y. F., Jen, Y. J., Chen, L. C., Chen, K. H. & Chattopadhyay, S. Design for approaching cicada-wing reflectance in low-and high-index biomimetic nanostructures. ACS nano 9, 301–311 (2015).

    Article CAS PubMed Google Scholar

  25. Li, X. et al. Enhanced Light‐Harvesting and Photocatalytic Properties in Morph‐TiO2 from Green‐Leaf Biotemplates. Advanced Functional Materials 19, 45–56 (2009).

    Article ADS Google Scholar

  26. Zhou, H. et al. Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis. Advanced Materials 22, 951–956 (2010).

    Article CAS PubMed Google Scholar

  27. Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C. & Nicorovici, N. Photonic engineering. Aphrodite’s iridescence. Nature 409, 36–37 (2001).

    CAS PubMed Google Scholar

  28. Kwon, Y. W. et al. Flexible Near-Field Nanopatterning with Ultrathin, Conformal Phase Masks on Nonplanar Substrates for Biomimetic Hierarchical Photonic Structures. ACS nano 10, 4609–4617 (2016).

    Article CAS PubMed Google Scholar

  29. Vincent, J. F. & Wegst, U. G. Design and mechanical properties of insect cuticle. Arthropod structure & development 33, 187–199 (2004).

    Article Google Scholar

  30. Xie, G. et al. The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 19, 095605 (2008).

    Article ADS PubMed Google Scholar

  31. Hong, S. H., Hwang, J. & Lee, H. Replication of cicada wing’s nano-patterns by hot embossing and UV nanoimprinting. Nanotechnology 20, 385303 (2009).

    Article ADS PubMed Google Scholar

  32. Zhang, G., Zhang, J., Xie, G., Liu, Z. & Shao, H. Cicada wings: a stamp from nature for nanoimprint lithography. Small 2, 1440–1443 (2006).

    Article CAS PubMed Google Scholar

  33. Zhang, X. et al. Integration of antireflection and light diffraction in nature: a strategy for light trapping. Journal of Materials Chemistry A 1, 10607–10611 (2013).

    Article CAS Google Scholar

  34. Hou, W. & Cronin, S. B. A review of surface plasmon resonance‐enhanced photocatalysis. Advanced Functional Materials 23, 1612–1619 (2013).

    Article CAS Google Scholar

  35. Rycenga, M. et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical reviews 111, 3669–3712 (2011).

    Article CAS PubMed PubMed Central Google Scholar

  36. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Cover Picture: Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angewandte Chemie International Edition 48, 1–1 (2009).

    Article Google Scholar

  37. Wu, M. et al. High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. Journal of Materials Chemistry A 1, 15491–15500 (2013).

    Article CAS Google Scholar

  38. Liu, J. et al. Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. Journal of Materials Chemistry A 2, 5051–5059 (2014).

    Article CAS Google Scholar

  39. Sung-Suh, H. M., Choi, J. R., Hah, H. J., Koo, S. M. & Bae, Y. C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry 163, 37–44 (2004).

    Article CAS Google Scholar

  40. Naoi, K., Ohko, Y. & Tatsuma, T. TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. Journal of the American Chemical Society 126, 3664–3668 (2004).

    Article CAS PubMed Google Scholar

  41. Chen, S. & Carroll, D. L. Synthesis and characterization of truncated triangular silver nanoplates. Nano letters 2, 1003–1007 (2002).

    Article ADS CAS Google Scholar

  42. Cozzoli, P. D. et al. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in hom*ogeneous nonpolar solution. Journal of the American Chemical Society 126, 3868–3879 (2004).

    Article CAS PubMed Google Scholar

  43. Tada, H., Ishida, T., Takao, A. & Ito, S. Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters. Langmuir 20, 7898–7900 (2004).

    Article CAS PubMed Google Scholar

  44. Liu, J. et al. Reversibly phototunable TiO2 photonic crystal modulated by Ag nanoparticles’ oxidation/reduction. Applied Physics Letters 98, 023110 (2011).

    Article ADS Google Scholar

  45. Morikawa, J. et al. Nanostructured Antireflective and Thermoisolative Cicada Wings. Langmuir 32, 4698–4703 (2016).

    Article CAS PubMed Google Scholar

  46. Nishimoto, S. & Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. Rsc Advances 3, 671–690 (2013).

    Article CAS Google Scholar

  47. Mao, L. et al. Sonochemical fabrication of mesoporous TiO2 inside diatom frustules for photocatalyst. Ultrasonics sonochemistry 21, 527–534 (2014).

    Article CAS PubMed Google Scholar

  48. Zhu, S. et al. A simple and effective approach towards biomimetic replication of photonic structures from butterfly wings. Nanotechnology 20, 315303 (2009).

    Article PubMed Google Scholar

  49. Zhang, W. et al. Three-dimensional ordered macroporous nano-architecture and its enhancing effects on Raman detection sensitivity for Eosin Y molecules. Materials & Design 119, 456–463 (2017).

    Article CAS Google Scholar

  50. Lu, R. et al. A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles. CrystEngComm 15, 6207–6212 (2013).

    Article CAS Google Scholar

  51. Li, J., Xu, J., Dai, W.-L. & Fan, K. Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. The Journal of Physical Chemistry C 113, 8343–8349 (2009).

    Article CAS Google Scholar

  52. Chen, Z. et al. Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. Journal of Materials Chemistry A 2, 824–832 (2014).

    Article CAS Google Scholar

  53. Yang, Q. et al. Hierarchical TiO2 photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. Journal of Materials Chemistry A 1, 541–547 (2013).

    Article CAS Google Scholar

Download references

The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings (2024)

References

Top Articles
Latest Posts
Article information

Author: Saturnina Altenwerth DVM

Last Updated:

Views: 5829

Rating: 4.3 / 5 (44 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Saturnina Altenwerth DVM

Birthday: 1992-08-21

Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

Phone: +331850833384

Job: District Real-Estate Architect

Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.