Electrolyte design for Li-ion batteries under extreme operating conditions (2024)

References

  1. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article CAS Google Scholar

  2. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article CAS PubMed Google Scholar

  3. Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article ADS Google Scholar

  4. Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    Article ADS CAS Google Scholar

  5. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article CAS PubMed Google Scholar

  6. Smart, M. et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J. Power Sources 119, 349–358 (2003).

    Article ADS Google Scholar

  7. Herreyre, S. et al. New Li-ion electrolytes for low temperature applications. J. Power Sources 97, 576–580 (2001).

    Article ADS Google Scholar

  8. Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).

    Article CAS Google Scholar

  9. Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).

    Article PubMed Google Scholar

  10. Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    Article ADS CAS Google Scholar

  11. Zhang, S., Xu, K. & Jow, T. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 4, 928–932 (2002).

    Article CAS Google Scholar

  12. Huang, C. K., Sakamoto, J., Wolfenstine, J. & Surampudi, S. The limits of low-temperature performance of Li-ion cells. J. Electrochem. Soc. 147, 2893 (2000).

    Article ADS CAS Google Scholar

  13. Zhang, S., Xu, K. & Jow, T. Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta 48, 241–246 (2002).

    Article CAS Google Scholar

  14. Petzl, M., Kasper, M. & Danzer, M. A. Lithium plating in a commercial lithium-ion battery—a low-temperature aging study. J. Power Sources 275, 799–807 (2015).

    Article ADS CAS Google Scholar

  15. Cai, W. et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem. Int. Ed. 133, 13117–13122 (2021).

    Article ADS Google Scholar

  16. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article CAS PubMed Google Scholar

  17. Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    Article ADS CAS PubMed PubMed Central Google Scholar

  18. Holoubek, J. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5, 1438–1447 (2020).

    Article CAS Google Scholar

  19. Ihara, M. et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte. J. Electrochem. Soc. 150, A1476 (2003).

    Article CAS Google Scholar

  20. Cho, Y.-G. et al. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 6, 2016–2023 (2021).

    Article CAS Google Scholar

  21. Henderson, W. A. Glyme−lithium salt phase behavior. J. Phys. Chem. B 110, 13177–13183 (2006).

    Article CAS PubMed Google Scholar

  22. Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article ADS PubMed PubMed Central Google Scholar

  23. Linert, W., Camard, A., Armand, M. & Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 226, 137–141 (2002).

    Article CAS Google Scholar

  24. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).

    Article CAS PubMed Google Scholar

  25. Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020).

    Article CAS Google Scholar

  26. Seo, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J. Electrochem. Soc. 159, A1489 (2012).

    Article CAS Google Scholar

  27. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article ADS CAS Google Scholar

  28. Bogle, X., Vazquez, R., Greenbaum, S., Cresce, A. V. W. & Xu, K. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 4, 1664–1668 (2013).

    Article CAS PubMed Google Scholar

  29. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article Google Scholar

  30. Ren, X. et al. Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 117, 28603–28613 (2020).

    Article ADS CAS PubMed PubMed Central Google Scholar

  31. Zhang, X. et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10, 2000368 (2020).

    Article CAS Google Scholar

  32. Yamaki, J.-I. et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells. J. Power Sources 102, 288–293 (2001).

    Article ADS CAS Google Scholar

  33. Beltrop, K. et al. Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries. J. Power Sources 373, 193–202 (2018).

    Article ADS CAS Google Scholar

  34. Waldmann, T. et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: systematic measurements with reconstructed 3-electrode pouch full cells. J. Electrochem. Soc. 163, A1232 (2016).

    Article CAS Google Scholar

  35. Hammersley, A., Svensson, S., Hanfland, M., Fitch, A. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248 (1996).

    Article ADS Google Scholar

  36. Qiu, X., Thompson, J. W. & Billinge, S. J. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    Article CAS Google Scholar

  37. Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C 122, 20108–20121 (2018).

    Article CAS Google Scholar

  38. Glaser, R., Borodin, O., Johnson, B. R., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li–S batteries by using localized low concentration highly fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).

    Article ADS CAS Google Scholar

  39. Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    Article CAS PubMed Google Scholar

  40. Gaussian 16 Rev. C.01 (Gaussian Inc., Wallingford, CT, 2016).

  41. Borodin, O. in Electrolytes for Lithium and Lithium-Ion Batteries: Modern Aspects of Electrochemistry Vol. 58 (eds Richard, T. et al.) 371–401 (Springer, 2014).

  42. Jürgen, H. Ab-initio simulations of materials using VASP: density‐functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article Google Scholar

  43. Dixit, M. et al. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Phys. Chem. Chem. Phys. 18, 6799–6812 (2016).

    Article CAS PubMed Google Scholar

  44. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article ADS PubMed Google Scholar

  45. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article Google Scholar

  46. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article CAS Google Scholar

  47. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article CAS Google Scholar

Download references

Electrolyte design for Li-ion batteries under extreme operating conditions (2024)

References

Top Articles
Latest Posts
Article information

Author: Reed Wilderman

Last Updated:

Views: 6059

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Reed Wilderman

Birthday: 1992-06-14

Address: 998 Estell Village, Lake Oscarberg, SD 48713-6877

Phone: +21813267449721

Job: Technology Engineer

Hobby: Swimming, Do it yourself, Beekeeping, Lapidary, Cosplaying, Hiking, Graffiti

Introduction: My name is Reed Wilderman, I am a faithful, bright, lucky, adventurous, lively, rich, vast person who loves writing and wants to share my knowledge and understanding with you.